561 research outputs found

    On the Bartnik extension problem for the static vacuum Einstein equations

    Full text link
    We develop a framework for understanding the existence of asymptotically flat solutions to the static vacuum Einstein equations with prescribed boundary data consisting of the induced metric and mean curvature on a 2-sphere. A partial existence result is obtained, giving a partial resolution of a conjecture of Bartnik on such static vacuum extensions. The existence and uniqueness of such extensions is closely related to Bartnik's definition of quasi-local mass.Comment: 33 pages, 1 figure. Minor revision of v2. Final version, to appear in Class. Quantum Gravit

    Einstein equations in the null quasi-spherical gauge

    Get PDF
    The structure of the full Einstein equations in a coordinate gauge based on expanding null hypersurfaces foliated by metric 2-spheres is explored. The simple form of the resulting equations has many applications -- in the present paper we describe the structure of timelike boundary conditions; the matching problem across null hypersurfaces; and the propagation of gravitational shocks.Comment: 12 pages, LaTeX (revtex, amssymb), revision 18 pages, contains expanded discussion and explanations, updated references, to appear in CQ

    Embedding spherical spacelike slices in a Schwarzschild solution

    Full text link
    Given a spherical spacelike three-geometry, there exists a very simple algebraic condition which tells us whether, and in which, Schwarzschild solution this geometry can be smoothly embedded. One can use this result to show that any given Schwarzschild solution covers a significant subset of spherical superspace and these subsets form a sequence of nested domains as the Schwarzschild mass increases. This also demonstrates that spherical data offer an immediate counter example to the thick sandwich `theorem'

    Multidimensional Gravity on the Principal Bundles

    Get PDF
    The multidimensional gravity on the total space of principal bundle is considered. In this theory the gauge fields arise as nondiagonal components of multidimensional metric. The spherically symmetric and cosmology solutions for gravity on SU(2) principal bundle are obtained. The static spherically symmetric solution is wormhole-like solution located between two null surfaces, in contrast to 4D Einstein-Yang-Mills theory where corresponding solution (black hole) located outside of event horizon. Cosmology solution (at least locally) has the bouncing off effect for spatial dimensions. In spirit of Einstein these solutions are vacuum solutions without matter.Comment: REVTEX, 13pages, 2 EPS figure

    Trapped Surfaces in Vacuum Spacetimes

    Get PDF
    An earlier construction by the authors of sequences of globally regular, asymptotically flat initial data for the Einstein vacuum equations containing trapped surfaces for large values of the parameter is extended, from the time symmetric case considered previously, to the case of maximal slices. The resulting theorem shows rigorously that there exists a large class of initial configurations for non-time symmetric pure gravitational waves satisfying the assumptions of the Penrose singularity theorem and so must have a singularity to the future.Comment: 14 page

    Just how long can you live in a black hole and what can be done about it?

    Get PDF
    We study the problem of how long a journey within a black hole can last. Based on our observations, we make two conjectures. First, for observers that have entered a black hole from an asymptotic region, we conjecture that the length of their journey within is bounded by a multiple of the future asymptotic ``size'' of the black hole, provided the spacetime is globally hyperbolic and satisfies the dominant-energy and non-negative-pressures conditions. Second, for spacetimes with R3{\Bbb R}^3 Cauchy surfaces (or an appropriate generalization thereof) and satisfying the dominant energy and non-negative-pressures conditions, we conjecture that the length of a journey anywhere within a black hole is again bounded, although here the bound requires a knowledge of the initial data for the gravitational field on a Cauchy surface. We prove these conjectures in the spherically symmetric case. We also prove that there is an upper bound on the lifetimes of observers lying ``deep within'' a black hole, provided the spacetime satisfies the timelike-convergence condition and possesses a maximal Cauchy surface. Further, we investigate whether one can increase the lifetime of an observer that has entered a black hole, e.g., by throwing additional matter into the hole. Lastly, in an appendix, we prove that the surface area AA of the event horizon of a black hole in a spherically symmetric spacetime with ADM mass MADMM_{\text{ADM}} is always bounded by A≤16πMADM2A \le 16\pi M_{\text{ADM}}^2, provided that future null infinity is complete and the spacetime is globally hyperbolic and satisfies the dominant-energy condition.Comment: 20 pages, REVTeX 3.0, 6 figures included, self-unpackin

    Late time behaviour of the maximal slicing of the Schwarzschild black hole

    Get PDF
    A time-symmetric Cauchy slice of the extended Schwarzschild spacetime can be evolved into a foliation of the r>3m/2r>3m/2-region of the spacetime by maximal surfaces with the requirement that time runs equally fast at both spatial ends of the manifold. This paper studies the behaviour of these slices in the limit as proper time-at-infinity becomes arbitrarily large and gives an analytic expression for the collapse of the lapse.Comment: 18 pages, Latex, no figure

    Constant mean curvature solutions of the Einstein-scalar field constraint equations on asymptotically hyperbolic manifolds

    Full text link
    We follow the approach employed by Y. Choquet-Bruhat, J. Isenberg and D. Pollack in the case of closed manifolds and establish existence and non-existence results for the Einstein-scalar field constraint equations on asymptotically hyperbolic manifolds.Comment: 15 page

    A new geometric invariant on initial data for Einstein equations

    Get PDF
    For a given asymptotically flat initial data set for Einstein equations a new geometric invariant is constructed. This invariant measure the departure of the data set from the stationary regime, it vanishes if and only if the data is stationary. In vacuum, it can be interpreted as a measure of the total amount of radiation contained in the data.Comment: 5 pages. Important corrections regarding the generalization to the non-time symmetric cas

    The Yamabe invariant for axially symmetric two Kerr black holes initial data

    Full text link
    An explicit 3-dimensional Riemannian metric is constructed which can be interpreted as the (conformal) sum of two Kerr black holes with aligned angular momentum. When the separation distance between them is large we prove that this metric has positive Ricci scalar and hence positive Yamabe invariant. This metric can be used to construct axially symmetric initial data for two Kerr black holes with large angular momentum.Comment: 14 pages, 2 figure
    • …
    corecore